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A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with
arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation
is predicted in the direction across the structure where the wave is exponentially localized and tunneling of
evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is chan-
neled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for
ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predomi-
nantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the
long tail of the wave observed in the transverse direction to a number of frequency domain “lucky shots”
associated with the long-living resonant modes localized inside the sample.
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I. INTRODUCTION

Propagation of waves in two-dimensional �2D� random
media has some specific features that make it rather different
from that observed in their three-dimensional counterparts. It
is believed generally that in 2D, the wave is always localized
irrespective of the disorder strength, in contrast to 3D struc-
tures, where a certain amount of disorder is needed for the
localization set up �1�.

Two-dimensional systems demonstrating Anderson local-
ization are widespread in both classical and quantum phys-
ics. For example, measurements of microwave radiation lo-
calized by scattering from a random array of dielectric
cylinders placed between a pair of parallel conducting plates
were reported in �2�. Although coupled with radiation modes,
plasmons are also shown to be localized on a rough metallic
surface �3�. The analogous effect is also evident for elastic
waves in randomly loaded membranes �4� and surface waves
on a rough bottom. An experimental demonstration of the
latter was carried out in a rather exotic system, namely, by
studying the propagation of third sound waves on superfluid
helium adsorbed to a 2D disordered substrate �5�. Observa-
tion of strong localization has been performed recently for
light propagating along 2D highly disordered photonic lat-
tices �6�, the first practical realization of the transverse local-
ization concept �7�. Anderson localization is also an intrinsic
feature for a variety of 2D electron gas systems where dis-
order prevails over the interactions, including doped semi-
conductors �8� and disordered superconductors �9�, to name a
few. The results of the recently published calculations sug-
gest that the Anderson localization of cold atoms �10� or
Bogolyubov quasiparticles in Bose-Einstein condensates
could be possible under experimentally accessible conditions
�11�.

The mathematical definition of localization usually refers
to an infinite system, in which there are only localized states
�12�, i.e., the eigenfunctions of the wave operator decrease
exponentially at infinity, �i�r��exp�−�r−ri� /2��. The damp-

ing rate of these localized modes �more correctly, of their
envelope squared�, the so-called inverse localization length
�−1�k�, should depend somehow on the wave vector k and
the statistics of the scattering potential. However, it is much
more important in practice that the presence of wave local-
ization alters dramatically the wave transport through finite
systems with open boundaries �13�. For example, in a slab
geometry, the intensity of the transmitted wave decreases
exponentially with the slab width L, i.e., in typical realiza-
tions I�L��exp�−L /��k��, instead of the 1 /L dependence
predicted by the classical diffusion theory.

The issue of wave localization in random media with an-
isotropic disorder is still controversial. By such a disorder,
we mean that the relevant constitutive parameter, say, dielec-
tric permittivity ��r�, is assumed to be a scalar value, but its
correlation function B��r�= ���r����r�+r�� is allowed to be
anisotropic. In geophysics, for instance, the typical horizon-
tal scale of many natural media is usually much larger than
the vertical one, so that the correlation ellipsoid has a pan-
cakelike form. A variety of photonic or electronic materials
of interest to modern technologies are also characterized by a
highly anisotropic microstructure. Most of the related theo-
retical results published in the literature are based on an an-
isotropic tight-binding Hamiltonian that can be mapped onto
a network model; both formulations assume the disorder is of
a short-range type �� correlated in space�. The results of
these studies indicate, in particular, that in 2D the wave is
completely localized irrespective of the anisotropy level, but
the localization length depends on the direction of wave
propagation �14–16�.

Random media are not simply a limiting form of chaos
like a white noise, but instead have some structure that be-
comes apparent in correlation functions of their constitutive
parameters. Random composites like ceramics or heteroge-
neous polymer phases, polycrystals and foams, colloids,
granular media, and biological tissues demonstrate long-
range correlations, sometimes of rather sophisticated form,
e.g., multifractal. The model of �-correlated potential may be
relevant for electron waves scattered by lattices with point-
like impurities in the long-wavelength limit. However, this
model is surely not applicable to the most interesting reso-
nant regime of classical waves propagating in continuous*samelsohn@hit.ac.il.
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media where the wavelength is comparable to the correlation
scale of the disorder. As we have shown recently for the
long-range correlated disorder, the transport properties of
continuous random media seem to be essentially different in
the directions along and across the major axis of the corre-
lation ellipse, at least for a weak scattering in the resonant
regime �17,18�. In particular, it was demonstrated that there
exists a frequency-dependent critical value of the anisotropy
parameter below which waves are localized at all angles of
propagation. Above this critical value, the radiation is local-
ized only within some angular sectors centered at the short
axis of the correlation ellipse and is extended in other direc-
tions.

In the present paper, we continue these works by address-
ing the problem of time-domain wave transport of narrow-
band wave packets in 2D systems. Two fundamental issues
are considered here: First, how the localization affects the
dynamics of pulsed waves propagating through statistically
isotropic 2D media �see also the results of calculations with
2D discrete models �19–21�, and a theoretical analysis �22�
and experimental work �23� both concerning wave propaga-
tion in 3D samples�; and second, whether the temporal be-
havior of the wave can be altered essentially when the dis-
order becomes anisotropic. Using the simplest perturbative
model yet capturing the essential physics, we can also an-
swer the central question that has been largely ignored in the
previous studies. Specifically, we explore a relationship be-
tween the relevant quantity �such as delay time for dynamic
measurements�, on the one hand, and the correlation proper-
ties of the scattering potential, on the other.

II. COHERENCE FUNCTION

Confining ourselves to exploring the scalar classical
waves, we start with the Green’s function,

G��r� =
i

2k
�

0

�

d	 exp�ik	/2� � Dv�t���r − �
0

	

dtv�t�	

 exp
i

k

2
�

0

	

dt�v2�t� + �̃��
0

t

dt�v�t���	
 , �1�

written in a so-called velocity �or white-noise� representation
of the Feynman path integral for a time harmonic source,
where ��·� is the Dirac � function, � stands for the angular
frequency of the radiation, and k=� /c is the wave number in
a homogeneous reference medium characterized by the wave
velocity c. Here, it is assumed that k contains an �infinitesi-
mally small� positive imaginary part that enforces the radia-
tion condition at infinity and provides the convergence of the
corresponding integral. Perturbation �̃�r� entering Eq. �1�
and playing the role of a scattering potential is a zero mean
random field. The basic quantity we evaluate here is the two-
frequency mutual coherence function �frequency field-field
correlator� defined as

���,�� = �G�+�/2G
�−�/2
* � , �2�

which is an important quantity in itself, but primarily due to
the fact that being properly normalized,

�̃��,�� = ���,��/���,0� , �3�

and then Fourier transformed, it gives the impulse response
function �photon time-of-flight distribution�,

J��,t� =
1

2

�

−�

�

d� exp�− i�t��̃��,�� , �4�

for a narrowband pulse with spectrum centered around a
given frequency � as, e.g., for a picosecond duration pulse of
visible light. Note that the impulse response function satisfies
the natural normalization condition �dtJ�� , t�=1.

To evaluate the coherence function, we first rescale the
integration paths in the corresponding Green’s functions as
vn�t�→�nvn�t�, where the coefficients �n are given by �n

=�k /kn �here n=1,2�, and k�k��� is the wave number cor-
responding to a “central” frequency �. Then, introducing the
Wigner-type functional variables,

w�t� =
1

2
�v1�t� + v2�t��, v�t� = v1�t� − v2�t� , �5�

we substitute Eq. �1� into Eq. �2� and perform ensemble av-
eraging. In order to dispose of the integrals over pseudotime,
an asymptotic procedure resembling the classical method of
stationary phase is used �24�. Then, the normalized correlator
in an m-dimensional system is presented as a double path
integral of the form

�̃��,�� � �̃0��,����1�2�−m� Dw�t� � Dv�t�


����1 + �2��r/2 − �
0

L

dtw�t�	

����1 − �2��r + �

0

L

dtv�t�	

exp�ik�

0

L

dtw�t� · v�t�	

exp�− X̃�w�t�,v�t�;�,��� , �6�

where �̃0�� ,�� is the normalized coherence function in a
homogeneous reference medium, L is the distance between
the source and the observation point,

X̃�w�t�,v�t�;�,�� = X�w�t�,v�t�;�,�� − X�w�t�,v�t�;�,0� ,

�7�

and the functional X, in its turn, is given by

X�w�t�,v�t�;�,�� =
k2

8
�

0

L

dt1�
0

L

dt2


��1
−4B��r1�t1� − r1�t2�;�1,0�

− 2��1�2�−2B��r1�t1� − r2�t2�;�,��

+ �2
−4B��r2�t1� − r2�t2�;�2,0�� �8�

�here the additional arguments in the correlation functions
take into account an arbitrary permittivity dispersion of the
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medium�. The functional paths entering Eq. �8� are written as

r1�t� = �1�
0

t

dt�w�t� + v�t�/2� , �9a�

r2�t� = �2�
0

t

dt�w�t� − v�t�/2� . �9b�

The double path integral in Eq. �6� may be evaluated by
applying a cumulant technique �17�. This results in

�̃��,�� = �̃0��,��exp�− �̃��,��� , �10�

where �̃�� ,�� is, generally, the cumulant series which, for
nondispersive media, is approximated here by the first cumu-
lant �see Ref. �24� for technical details�,

�̃��,�� =



2
k3L� dK f̃�K,�,�����K� , �11�

and ���K� is the power spectrum of the disordered system,
i.e., Fourier transform of the pair correlation function B��r�.
The kernel of the integral transform �11�, called the �normal-
ized� filtering function in our previous works �17,18�, has the
form

f̃�K,�,�� = K−2�1 − exp�i�L�K/8ck2��K − 2k · K/K���


��K − �2k · K/K�� , �12�

where ��·� is the Heaviside step function. The wave vector k
is directed along the line connecting the source with the ob-
servation point, its length being equal to k. As follows from
Eq. �12�, the loss of coherence between two waves with dif-
ferent frequencies is due to both Bragg scattering on spectral
components lying within the limiting sphere of the Ewald
construction �K�2k� and also to local high-frequency reso-
nances �K�2k�; see Fig. 1.

Another issue that can be covered by using our model of
the coherence function is the role of dissipation. In an ab-
sorptive medium, the dissipation is usually accounted for by
taking the scattering potential �permittivity or refractive in-
dex� to be a complex-valued field. When the dissipation is
small, a possible alternative is to consider the scattering po-
tential to be real while assigning a small imaginary part to
the frequency or wave number: k→k+ i�, where � is the
decrement of the field in a homogeneous medium. Without
scattering, the intensity of the wave will then decrease as
exp�−2�L�, the factor that has to be included in the expres-
sion for �0�� ,��. Interaction of scattering and absorption is
determined by the cumulant �̃�� ,�� in which the substitu-
tion �→�+2ic� should be performed �24�.

III. DIFFUSE TIME

In studying wave-packet dynamics, we consider only the
first temporal moment of J�� , t�, namely the mean arrival
time �also known as delay, diffuse, or traversal time� defined
as �25�

	�k� = �
−�

�

dttJ��,t� , �13�

where the argument of 	 is intended to stress the fact that in
the general case, the delay time should depend upon both
modulus and direction of the wave vector k �note that such
dependence is demonstrated explicitly by the coherence
function, Eqs. �10�–�12� and then has to be present in the
impulse response�. Substituting Eq. �3� into this definition,
interchanging the integration order, and identifying the inte-
gral over t with the first derivative of the � function, we
obtain

	�k� = i� ��̃��,��
��

�
�=0

. �14�

Hence we find that 	�k�=	0+ 	̃�k�, i.e., the delay time is
composed of the time of propagation in a homogeneous ref-

erence medium 	0=L /c, the term originating from �̃0�� ,��,
and the excess delay time 	̃�k�= i�̃��� ,0�, related to the pho-
ton random walk and arising from the corresponding expo-
nential in Eq. �10�. Thus, performing the required differen-
tiation for nondissipative media ��=0�, we arrive at

	̃�k� =

kL2

16c
� dK��K − �2k · K/K�����K� . �15�

Always taking only positive values, the model obtained sat-
isfies the causality principle. The final result, which is valid
for both two- and three-dimensional systems, is formulated
as a transformation of the classical integral geometry: to find
the delay time, we should integrate the power spectrum over

FIG. 1. �Color online� Two-dimensional version of the Ewald
construction. The points of the Ewald sphere for a given wave vec-
tor k determine all possible spectral components that could reso-
nantly transform the incident wave into a scattered one. The limit-
ing sphere encircles all spectral components coupling any two wave
vectors in the process of elastic scattering. An example of the cor-
relation ellipse for a medium with elongated cigarlike inhomogene-
ities is shown in both configuration and Fourier space. The major
axis of the ellipse in configuration space corresponds to the direc-
tion of higher correlation.
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the visible area, i.e., just outside the eight curve formed by
the two Ewald spheres; see Fig. 1. Moreover, it can be shown
that the integral transform �15� is invertible, which allows
one, in principle, to reconstruct the power spectrum of a
heterogeneous medium by measuring the angular distribu-
tions of the diffuse time for pulsed waves of different fre-
quencies �26�.

Although our perturbative model for the coherence func-
tion is not so accurate deep in the diffusion regime �mainly
by virtue of the fact that only the first cumulant is taken into
account�, its first temporal moment, 	̃�k�, is reliable under all
possible propagation conditions. Indeed, as can be shown by

expanding the functional X̃�� ,�� into a Taylor series at �
=0, the contribution of all higher cumulants to the first de-
rivative of �̃�� ,�� is exactly zero.

It is worth noting that our starting formulation deals with
the point source located in an infinite medium. However, an
absorption �let us recall that the wave number in Eq. �1� has
a positive imaginary part� or, equivalently, some leakage at
the boundaries, though located arbitrarily far from the
source, is implicitly assumed to ensure the convergence of
the corresponding integrals and to prevent any singularities
that are possible in unbounded media with localization. An-
other effect is related to the stationary phase approximation
we use on the way to Eq. �6�, also eliminating effectively the
contribution of wave scattering from distant areas of the me-
dium to the measured field. Overall, this makes our geometry
much more similar to that of a finite sample with open
boundaries. It has been instructive, therefore, to test the de-
lay time 	̃�k� calculated for isotropic 3D media against the
results of the measurements performed for ultrasound �27�,
microwaves �23,28�, and optical waves �29� diffused through
a slab of a strongly scattering medium. The theoretical pre-
dictions appear to be of the same order of magnitude as the
corresponding measured values, a rather surprising coinci-
dence by virtue of the fact that in all these experiments, the
radiation is of a vector nature, in contrast to the scalar model
adopted here.

In principle, our main goal here is to explore the effect of
microstructure, which is assumed to be universal, uncoupled
in a sense from the details of the sample’s geometry. In what
follows, we consider 2D systems. As an example, we assume
that the medium is described by an anisotropic Gaussian cor-
relation function,

B��r� = ��
2 exp�− �x2/��

2 − y2/���
2� , �16�

where ��
2 is the variance of the fluctuations, while �� and �

are, respectively, the mean geometrical value and the ratio of
the correlation lengths along the two coordinate axes �see
Fig. 2�. When, for instance, ��1, the inhomogeneities are
stretched along the y axis. Since the two situations, ��1
and ��1, are topologically equivalent, we consider only the
case ��1. The value of � defined in this manner is there-
fore the inverse of the aspect ratio.

Substituting the corresponding expression for the power
spectrum ���K� into Eq. �10� and performing integration
over the radial coordinate leads to

	̃��� = T
�

�

�

0




d��a�
−2����exp�− a�

2 ����cos2�� − ����2� ,

�17�

where

a�
2 ��� = � sin2 � + �1/��cos2 � , �18�

�=kl� is the normalized wave number, � is the angle mea-
sured between the short axis of the correlation ellipse and the
direction of wave propagation, and T=�
��

2L2 /32c�� is the
isotropic high-frequency delay �see below�. In statistically
isotropic media, the remaining integration may be performed
analytically, which results in

	̃��� = T�
� exp�− �2/2�I0��2/2� , �19�

where I0�·� is the modified Bessel function of the first kind.
As follows from the latter equation, the delay time increases
linearly with � in the long-wavelength regime ���1�,
reaches its maximum value �1.18T at ��1, and then de-
creases slightly by approaching T in the high-frequency limit
���1�. Qualitatively, this behavior is similar to that demon-
strated by the inverse localization length �−1��� in isotropic
2D media, although the latter quantity has a more pro-
nounced maximum in the resonant regime �17�.

In the long-wavelength limit, ��2�1, the transport dy-
namics remains isotropic even for anisotropic systems. Geo-
metrically, the correlation ellipse in the Fourier space is
much greater in size than the Ewald circles, and their rota-
tions cut out only a very small part of the power spectrum,
hardly influencing the result of integration. In contrast, an-
isotropic systems in the resonant ���1� and high-frequency
regimes do alter essentially the wave-packet dynamics by
redistributing the energy flow between different directions.
As is seen from Fig. 3, the diffuse time is always smaller in
the direction across ��=0° ,180° � than in the direction along
��= �90° � the structure.

FIG. 2. �Color online� Realization of the scattering potential
with Gaussian correlation function, Eq. �16�. Random medium is
modeled by Fourier transforming a two-dimensional K-space white
noise sample multiplied by ����K�. The inhomogeneities are
stretched in the horizontal direction, �=8.
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IV. ANALYSIS

At first glance, this result looks counterintuitive. Indeed,
as follows from direct numerical simulations we have per-

formed for ultra-wide-band pulses in open disordered sys-
tems �30�, the dynamics of propagation seems to be charac-
terized by just the inverse relation. Specifically, the tail of the
pulse �or coda wave, using the geophysics terminology� scat-
tered along the structure is typically shorter than that mea-
sured in the transverse direction. This paradox, however,
may be easily resolved by inspecting the spectral content of
the transmitted waves �30�. Actually, in the propagation
along, almost all frequencies of the original pulse are usually
present in the recorded signal. At the same time, in the

(a)

(b)

FIG. 4. �Color online� Two consecutive snapshots of an electro-
magnetic pulsed wave �TM mode� propagating in a randomly vary-
ing dielectric medium that is constant in the transverse direction.
Numerical simulations are performed using the finite-difference
time-domain technique, supplemented by absorbing boundary con-
ditions. A very short pulse �first derivative of the Blackman-Harris
waveform� with overall 310 time steps duration is radiated by a
point source located at the center �labeled by the � sign� of the
computation domain. Spatial electric field distribution is registered
at �a� t=1500 and �b� t=1900 time steps. The statistics of random
dielectric structure is exactly the same as in Fig. 2, with the follow-
ing set of related parameters: ���=4, ��

2=1, and ��=30 grid points.
Inhomogeneities of the medium are stretched in the horizontal di-
rection ��=8�. It is seen that even at the initial stage of wave
evolution, the radiation diffuses predominantly in the direction
along the structure, while the propagation in the transverse direction
is highly suppressed. Note a relative slowdown of the wave motion
in the direction of wave channeling, and also the field fragmentation
there, in contrast to a sharply defined wave front running at a maxi-
mum velocity across the structure

(a)

(b)

(c)

(d)

FIG. 3. �Color online� Delay time 	̃ calculated as a function of
propagation angle � for a number of different values of the normal-
ized wave number �: �a� �=1, �b� �=2, �c� �=4, �d� �=8. The
dashed line indicates the isotropic case ��=1�. Other curves corre-
spond to �=2, 4, 8, 16, and 32; delay time increases monotonically
with � in the direction along the structure ��= �90° �.
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propagation across, most of the spectral components are lost;
only a small number of frequency domain “lucky shots” sur-
vive here, the others escape due to the radiation channeling
along the structure.

These lucky shots governing the time-domain dynamics
of ultra-wide-band signals are reminiscent of the localized
modes causing enhanced transmission through one-
dimensional disordered samples. According to the effective
cavity approach �31�, the random 1D medium can be re-
placed conceptually by a combination of two potential barri-
ers separated by a transparent segment �a kind of quantum
well� having a length that is approximately equal to the lo-
calization length � at the resonant frequency. Although the
potential involved here is random, the essential physics is
actually the same as, for example, in a resonant tunneling of
electromagnetic or acoustic waves through a double barrier
consisting of two photonic/phononic crystals. As has been
recently shown �32�, on resonance the group delay measured
in such a system is large, while off resonance the wave
propagation is very fast, the latter in agreement with vanish-
ingly small tunneling time in under-the-barrier propagation
of both classical and quantum-mechanical waves.

Thus, these are the high-Q long-living modes that are re-
sponsible for the long tail observed in ultra-wide-band mea-
surements. It is worth noting that our theory deals with nar-
rowband wave packets, hence the probability of their
resonant transmission should be very low, at least for suffi-
ciently large samples, and the contribution of these modes to
the overall delay time statistics has to be negligible. The
tunneling may then be considered as a dominant mechanism
here, which explains the reduction of 	̃ predicted by our
model for waves propagating across the structure.

The question of true absence of localization along the
structure as predicted in �18� remains open and deserves fur-
ther analysis. In our simulations �one such example is pre-
sented in Fig. 4�, consistent in general with the developed
theoretical model, the size of the disordered sample is obvi-
ously much smaller than the localization length � in this

direction, even if the localization is present. In any case,
another mechanism causing a high transmission is known to
exist: the so-called necklace states �33�, i.e., the spectrally
overlapping modes supported by a set of coupled effective
cavities, observed recently in the 1D slab geometry �34�.
Since the coupling between neighboring modes in the direc-
tion along the structure should be highly enhanced due to
anisotropy of the medium, the increase of the delay time
predicted by our model for �= �90° may find a natural
explanation.

V. SUMMARY

We have developed a theoretical model describing explic-
itly the dynamics of narrowband wave packets in random
media. The model relates the delay time to the correlation
properties of the disorder through a linear integral operator,
allowing a simple geometry-based analysis. The delay time
in isotropic 2D systems is shown to increase linearly with
frequency in the long-wavelength limit, to achieve a maxi-
mum value in the resonant regime, and to be a constant for
higher frequencies. In anisotropic systems, fast propagation
is predicted in the direction across the structure where the
wave is localized. This behavior is associated with wave tun-
neling via fast evanescent modes, the mechanism providing
energy transport in typical realizations. Along the structure,
where the wave is channeled as in a waveguide, the motion
of the wave energy is relatively slow. The question of
whether this channeling is supported by true extended states
or is due to the excitation of necklace modes requires further
investigation. Numerical simulations of short-term dynamics
of pulsed electromagnetic waves support in general the
above conclusions, but cannot provide a definite answer for
large systems due to computer limitations. At the same time,
the related phenomena may be studied experimentally in a
variety of two-dimensional systems with classical waves or
quantum particles.
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